Critical Percolation of Free Product of Groups

نویسنده

  • Iva Kozáková
چکیده

In this article we study percolation on the Cayley graph of a free product of groups. Such a graph has a tree-like structure which allows us to evaluate the critical values of the phase transition, mean cluster size and the critical exponent in bond percolation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL

The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...

متن کامل

Percolation and Minimal Spanning Trees

Consider a random set V n of points in the box n; n) d , generated either by a Poisson process with density p or by a site percolation process with parameter p. We analyse the empirical distribution function F n of the lengths of edges in a minimal (Euclidean) spanning tree T n on V n. We express the limit of F n , as n ! 1, in terms of the free energies of a family of percolation processes der...

متن کامل

Percolation systems away from the critical point

This article reviews some effects of disorder in percolation systems away from the critical density pc. For densities below pc, the statistics of large clusters defines the animals problem. Its relation to the directed animals problem and the Lee–Yang edge singularity problem is described. Rare compact clusters give rise to Griffiths singularities in the free energy of diluted ferromagnets, and...

متن کامل

Critical percolation on certain nonunimodular graphs

An important conjecture in percolation theory is that almost surely no infinite cluster exists in critical percolation on any transitive graph for which the critical probability is less than 1. Earlier work has established this for the amenable cases Z and Z for large d, as well as for all non-amenable graphs with unimodular automorphism groups. We show that the conjecture holds for several cla...

متن کامل

A power law for the free energy in two dimensional percolation

Consider bond percolation on the square lattice and site percolation on the triangular lattice. Let κ(p) be the free energy at the zero field. If we assume the existence of the critical exponents for the three arm and four arm paths and these critical exponents are −2/3 and −5/4, respectively, then we can show the following power law for the free energy function κ(p): κ(p) = +(1/2− p) for p < 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008